

Femto-UP 2020-21 School

Femtosecond Pulse Generation

Adeline Bonvalet

Laboratoire d'Optique et Biosciences

CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France

Definitions

Many properties

Time-resolved spectroscopy

Electric field of a 10-fs 800-nm pulse

Time-resolved spectroscopy Direct observation of ultrafast motions

Δ

→ time

Ahmed Zewail, Nobel Prize in chemistry 1999, femtochemistry

Imaging

Electric field of a 10-fs 800-nm pulse

High peak power (Energy /Duration)

Nonlinear microscopy

Material processing

Electric field of a 10-fs 800-nm pulse

High peak power (Energy /Duration)

Laser matter interaction

Drilling, cutting, etching,...

B. Chichkov et al, Appl. Phys. A. 63, 109 (1996)

Areas of applications : aeronautics, electronics, medical, optics...

Light matter interaction

Electric field of a 10-fs 800-nm pulse

High peak power (Energy /Duration)

Ability to reach extreme conditions (amplified system)

Applications : Sources of intense particles beams, X-rays, high energy density science, laboratory astroprophysics ...

Metrology

Electric field of a 10-fs 800-nm pulse

Spectral Properties (Frequency Comb)

J.L. Hall T.W. Hänsch

Nobel Prize 2005 "for their contributions to the development of laser-based precision spectroscopy, including the optical frequency comb technique." 8

Introduction

- 1. Description of ultrashort light pulses
- 2. Generation of femtosecond laser pulses via mode locking
- 3. Femtosecond oscillator technology

Introduction

© Manuel Joffre

Ultrashort pulse = broad spectrum

What makes the difference between white light and femtosecond pulses ?

Definitions : Electric fields

E(t) Real electric field

Ultrashort pulse = sum of monochromatic waves

$$E(t) = \int_{-\infty}^{\infty} E(\omega) \exp(-i\omega t) \frac{d\omega}{2\pi} = TF[E(\omega)]$$

$$E(\omega) = \int_{-\infty}^{\infty} E(t) \exp(i\omega t) dt = TF^{-1} [E(t)]$$

Definitions : Complex electric fields

Definitions : Complex electric fields

Definitions : Intensity

Gaussian envelope centered on the carrier frequency

Temporal intensity

 $I(t)=\exp(-rac{t^2}{a^2})$

RMS width

 $\Delta t = a/\sqrt{2}$

Spectral intensity

$$I(\omega) = \exp(-a^2(\omega-\omega_0)^2) \qquad \qquad \Delta \omega = 1/a\sqrt{2}.$$

0.9

Temporal intensity

 $I(t)=\exp(-rac{t^2}{a^2})$

Spectral intensity

$$I(\omega) = \exp(-a^2(\omega-\omega_0)^2) \qquad \qquad \Delta \omega = 1/a\sqrt{2}.$$

RMS width
$$\Delta t = a/\sqrt{2}$$

$$\Delta t \Delta \omega = 1/2$$

$$\Delta t$$

0.9

Temporal intensity

 $I(t)=\exp(-rac{t^2}{a^2})$

Spectral intensity

$$I(\omega)=\exp(-a^2(\omega-\omega_0)^2)$$

RMS width
$$\Delta t \Delta \omega = 1/2$$
 $\Delta t = a/\sqrt{2}$ The uncertainty limit is only
reached for Gaussian pulses $\Delta t \Delta \omega = 1/2$ Image: Comparison of the two stress of t

Temporal intensity

 $I(t)=\exp(-rac{t^2}{a^2})$

FWHM Full Width at Half Maximum

$$\Delta t_{1/2} = \sqrt{8ln2}\Delta t = 2.355\Delta t$$

$$\Delta t_{1/2}\Delta \omega_{1/2}=4ln2$$

Spectral intensity

$$I(\omega)=\exp(-a^2(\omega-\omega_0)^2)$$

For $\lambda = 1 \mu m$ Pulse duration = 100 fs / Spectral bandwidth = 14,6 nm

Temporal profile and spectral phase

$$\varepsilon(\omega) = |\varepsilon(\omega)| \exp(i\varphi(\omega))$$

Temporal profile and spectral phase

$$egin{split} \mathscr{E}(\omega) &= |\mathscr{E}(\omega)| \exp(i arphi(\omega)) \ arphi(\omega) &= arphi(\omega_0) + arphi'(\omega_0)(\omega-\omega_0) + rac{1}{2} \, arphi''(\omega_0)(\omega-\omega_0)^2 + rac{1}{6} \, arphi'''(\omega_0)(\omega-\omega_0)^3 + \dots \end{split}$$

 $\tau_g(\omega) = \varphi'(\omega)$ Group delay = relative delay of a spectral component

Effects of the spectral Phase

Effects of the spectral Phase

$$\mathscr{E}(\omega) = |\mathscr{E}(\omega)| \exp(i\varphi(\omega))$$

$$\varphi(\omega) = \varphi(\omega_0) + \varphi'(\omega_0)(\omega - \omega_0) + \frac{1}{2}\varphi''(\omega_0)(\omega - \omega_0)^2 + \frac{1}{6}\varphi'''(\omega_0)(\omega - \omega_0)^3 + \dots$$

$$\tau_g(\omega) = \varphi''(\omega_0)(\omega - \omega_0)$$
The group delay varies linearly with the frequency
$$t$$

Parabolic spectral phase

26

Spectral phase accumulated by propagation :

 $arphi(z,\omega)=arphi(0,\omega)+k(\omega)z \qquad \qquad k(\omega)=n(\omega)\omega/c$

$$au_g(z,\omega)= au_g(0,\omega)+k'(\omega_0)z+(\omega-\omega_0)k''(\omega_0)z+\dots$$

Spectral phase accumulated by propagation :

 $arphi(z,\omega)=arphi(0,\omega)+k(\omega)z \qquad \qquad k(\omega)=n(\omega)\omega/c$

$$\tau_g(z,\omega) = \tau_g(0,\omega) + k'(\omega_0)z + (\omega - \omega_0)k''(\omega_0)z + \dots$$
Constant delay
$$V_g(\omega) = 1/k'(\omega)$$
Group velocity
(velocity of the envelope)

Spectral phase accumulated by propagation :

 $arphi(z,\omega)=arphi(0,\omega)+k(\omega)z \qquad \qquad k(\omega)=n(\omega)\omega/c$

What is the output pulse after propagation in a material with k">0?

Quizz

Duration after propagation in a dispersive material

Materials transparent in the visible : k">0

Dispersive effects higher for shorter pulses

 $au_g(z,\omega)= au_g(0,\omega)+k'(\omega_0)z+(\omega-\omega_0)k''(\omega_0)z+\dots$

Summary 1

- $\varepsilon(\omega) = |\varepsilon(\omega)| \exp(i\varphi(\omega))$
- ✓ Short Pulse = broad spectrum

$$\Delta t \Delta \omega \ge \frac{1}{2}$$

- \checkmark The spectral phase governs the temporal shape
- ✓ Non linear spectral phase = group velocity dispersion
- Propagation in transparent material = up chirped pulse

Introduction

- 1. Description of ultrashort light pulses
- 2. Generation of femtosecond laser pulses via mode locking
- 3. Femtosecond oscillator technology

Fundamental of mode locking

Gain medium

$\mathbb{A} = \mathbb{A} =$ $\phi_n(t)$ ω_n Example : $\phi_{n+1}(t)$ $^{\Lambda}$ ω_{n+1} $\lambda = 800 nm$ $\phi_{n+2}(t)$ ω_{n+2} $\Delta \lambda = 80 nm$ $\phi_{n+3}(t)$ ω_{n+3} N modes >100 000 $\omega_{n+4} = \phi_{n+4}(t)$... how when the mark of the second the second second Random phase modes $I(t) = I_0 igg[rac{\sin(N\delta\omega t/2)}{\sin(\delta\omega t/2)} igg]^2$ In-phase modes : $\phi_n(t) = 0$ $2\pi/\delta\omega$ $\delta\omega = 2\pi \frac{c}{2L}$ 37

Longitudinal modes

in time domain

Mode locking

Mode locking = phases locked $\phi_n = n\alpha$ Train pulses separated by the round trip timeSpectral width increases with NDuration decreases with N

38

Mode locking

Idea :to favor pulsed regime over continous one

Loss modulation

- Active modelocking
 Acousto-optic modulator
 - ➢Electro-optic modulator
- Passive modelocking
 KLM
 SESAM

Figure from book chapter Ultrafast solid-state lasers, Ursula Keller

Active modelocking

Acousto-optic (or electro-optic) modulator synchronized with the resonator round trip

Generation of a grating that turns ON and OFF at a frequency $2\Omega = c/2L$

Self amplitude modulation of the light by **fast** loss saturation

Shorter pulse Starting with noise fluctuations

- Kerr Lens
- Saturable absorber

Kerr effect: Nonlinear change in refractive index $n(r) = n_0 + n_2 I(r)$ Fast (few fs) and broadband

KLM = Kerr Lens Modelocking

Self focusing + hard or « soft » aperture

Not self starting : vibrating mirror or saturable absorber

Saturable absorber

Saturable absorber : component with losses reduced by high intensities

How to compensate for the dispersion in the cavity?

DVG >0 in the visible

- ✓ Prisms
- ✓ Gratings
- ✓ Chirped mirrors

Dispersion management with prisms

Prism sequence for adjustable group delay dispersion.

angular dispersion

Dispersion management with prisms

Prism sequence for adjustable group delay dispersion.

Dispersion management with prisms

Dispersion management with gratings

Laboratoire d'Optique et Biosciences

p diffraction order
d grating pitch
I angle of incidence
θ angle of the reflected wavelength

$$\frac{d^2\varphi}{d\omega^2} = \frac{-8\pi^2 cL}{\omega^3 d^2 \cos^3 \theta} < 0 \qquad (p=1)$$

$$\frac{d^3\varphi}{d\omega^3} = \frac{12\pi^2 cL}{\omega^4 d^2} \frac{1 + \frac{2\pi c}{\omega d} \sin i - \sin^2 i}{\cos^5 \theta} > 0$$

Dispersion management with gratings

- ✓ negative group delay
 ✓ Distance between gratings
 ✓ Gratings pitch
- \checkmark 4 gratings or 2 gratings in double pass

✓ much more dispersive than prisms but introduces higher losses

Dispersion management with chirped mirror

Bragg mirror with variable layer thickness values

✓Compact

✓ High reflectivity

✓ Can compensate for higher orders

✓ Fixed GDD -> multiple
 reflections

The repetition rate of a femtosecond oscillator is related to:

- The acousto-optic modulator
- The length of the cavity
- the pulse width

1 2 3

The repetition rate of a femtosecond oscillator is related to:

• The length of the cavity

Summary 2

 $\Delta \omega = 2\pi rac{c}{2L}$ 53

Frequency comb

Discrete and perfectly equally spaced frequency lines

➢ frequency etalon

The carrier enveloppe phase

- f_r Repetition rate 100MHz-GHz
- f_0 Carrier Enveloppe Offset (CEO)

For very short pulse, difference between phase and group velocities matters

$$f_0 = \frac{\Delta \phi_{CE}}{2\pi} f_r$$
$$\Delta \phi_{CE} = L\omega_0 \left(\frac{1}{v_g} - \frac{1}{v_\varphi}\right)$$

Frequency comb for optical clock

https://www.nist.gov/programs-projects/femtosecond-laserfrequency-combs-optical-clocks f_r and f_0 are **Microwave frequencies** (100MHz-GHz) linked to **optical frequencies** (THz)

A revolution in the measure of time/frequency

Frequency comb evolutionary tree

fs oscillator = « comb generator »

Introduction

- 1. Description of ultrashort light pulses
- 2. Generation of femtosecond laser pulses via mode locking
- 3. Femtosecond oscillator technology

Femtosecond oscillator technology

✓ Ti:Sapphire oscillators

✓ Yb:bulk oscillators

✓ Fiber-based oscillators

Laser specifications

Energy	Energy per pulse	Joule
Average power	Energy per unit time	Watt
Peak power	Maximum power	Watt
Intensity (irradiance)	Peak power per unit area	Watt/cm2

Quizz

Quizz

Pulse width10 fsEnergy10 nJRepetition rate100 MHzAverage power?1 W = 10 nJ x 100 MHzPeak power?1 MW = 10 nJ / 10fsEnergy

Ti:Sapphire oscillator

Sapphire crystals doped with ions Ti3+

Good thermal conductivity

Very broad gain bandwidth from 650 nm to 1100 nm Large emission cross section (41. 10⁻²⁰ m2 @ 780 nm)

Extreme tunability and short duration

Ti:Sapphire oscillator

Large quantum defect (energy difference between pump and laser photons)

Pump : green CW laser (DPSS : frequency doubled diode-pumped laser)

YVO4

SHG

diodes

Energetically inefficient, complex and expensive

Ti :Sapphire cavity

LippB Laboratoire d'Optique et Biosciences

Pulses in the two-cycle regime

Interferometric autocorrelation

Pulse duration ~5fs

D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, "Semiconductor saturable-absorber mirror–assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the **two-cycle regime**," Opt. Lett. **24**, 631-633 (1999)

Ti:Sapphire commercial lasers

0,7 W, 700-1080 nm, <100fs

2,5 W, 690nm- 1020 nm, 140fs

Repetition rate : 80MHz

Ti:Sa today :

 Expensive and not very effective but reliable, tunable, and very short pulsewidth
 Many applications : bio-imaging, ultrafast spectroscopy, high field physics, amplifier seeding,...

Ytterbium : bulk oscillator

Many different hosts for Ytterbium ions : YAG, glass, KYW, CaF2, ... Low quantum defect : high power efficiency, reduced thermal effects Great advantage : **diode pumping** at 980 nm

Ytterbium : bulk oscillator

Pulse width : 300 fs Repetition rate : 50 MHz Energy : a few 100s nJ **High average power** ✓ SESAM

✓ Prisms or chirped mirrors

Ytterbium : bulk oscillator

Average Power	> 1,3 W
Energy Per Pulse	>24 nJ
Pulsewidth	< 250 fs
Repetition Rate	54 MHz
Central Wavelength	1025 +/- 5 nm

Average Power	>1.5 W
Wavelength	1045 ±8.0 nm
Repetition Rate	63 MHz
Pulse Width (FWHM)	<250 fs
Pulse Energy	>24 nJ
Peak Power	>80 kW

- ✓ High average power
- ✓ Low cost per watt
- ✓ Compact
- ✓ Pulse duration 300fs

Fiber-based oscillators

Gain media : fiber doped with Rare Earth ions (Large gain bandwidth)

Fiber-based oscillators

Conventional laser

Fibre laser

Large surface area Guided mode Heat resistance of silica

Simple cavity of fiber-based oscillators

Fiber-based oscillators

✓ Long propagation distance : High gain, low thermal effects

- ✓ Spatial quality
- ✓ Stability
- ✓ Compactness
- ✓Cost effective

Large variety of designs and specifications

1 W , 200fs , 1045 nm , 50 MHz fs pulses delivered by optical cable

✓ Ultrashort pulses = broad spectra -> Large dispersion effects

✓ Description in both time and frequency domain

✓ Generation via modelocking thanks to nonlinear effects

✓ Wide variety of femtosecond lasers