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The most characteristic features of HHG,

historical aspects:

In 1985: the famous article by Strickland and Mourou opens the way to

high power lasers with ultrashort pulse duration
End 80’s: studies about photo-ionization of atoms by intense lasers,

electron/ion spectrometers, ATI spectra, first harmonic spectra
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FIG. 4. Harmonic spectra in {a) Xe, (b) Ar, and (c) He.

FIG. 3. Xe* (full circles), Ar*, Ar’* (open circles), Ne™,
The laser intensity is approximately 10'®* W /cm?.

and Ne?* (full circles) ions as a function of the laser intensity.
The lines (dashed for the Ar ions and solid for the Xe and Ne
ions) are the predictions from tunnel ionization.

From C.G. Wahlstrém et al, PRA (1993)



The most characteristic features of HHG,

historical aspects:

1993: the three step model is proposed to explain the physical origin of
HHG, the cut-off law, still qualitative, semi-classical

1994/1995: the Lewenstein model, still quite “simple” but allows a more
guantitative and quantic approach, explains the main features

1995: First prediction of the possibility for attosecond structure

End 1990’s: The macroscopic aspects of HHG is studied both theoretically
and experimentally

1999: The definition of the absorption limit for HHG

Beginning 2000: first attosecond characterizations with the RABBIT
method, attoscience is born

Afterwards: The HHG source is used as a tool for applications in atomic
physics, molecular physics, solid state physics, etc.

Now: It can be a compact commercial source at high rep rate and people
use it as a turn key black box



The most characteristic features of HHG:
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The most characteristic features of HHG:

The cutoff law
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How it looks like experimentally?




How it looks like experimentally?

Gas Jet

Toroidal Mirror

Electron Multiplier

o

The gas is a rare gas, it can be a jet, a cell, pulsed or not

The experiment is fully in vacuum

The emission is on axis->filter is required

The laser is focused and apertured (the size of the experiment depends on laser energy)
Laser intensity is in the range 101 W/cm?, polarization is linear

The best way to detect is a EUV spectrometer, microchannel plates, photodiode, CCD
Efficiency is low: 104 is the maximum, goes down to 107 for short wavelengths

Optical quality is good: low divergence, coherent beams, linear polarization 10
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Depending on the target spectrum:

e Multilayer mirrors
* Grazing incidence mirrors

The most characteristic features of HHG:

Filter transmission for 250 nm width
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An optical element in the EUV is generally:
* Expensive,

* Fragile,

» Strongly absorbing
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The most characteristic features of HHG:

Typical experimental data

Source

¥

U

HHG spectrum in argon with a transmission spectrometlezr



The most characteristic features of HHG:
Typical experimental data
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HHG spectrum in neon with an imaging spectrometer

HHG spectrum in neon with a transmission spectrometer



The most characteristic features of HHG:

Typical experimental data

Caméra CCD XUV

Filtre aluminum

——<

HHG + IR HHG

HHG footprint after
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The physical origin of the non linear polarization

Of atoms in strong laser fields

Champ laser IR

Potentiel atomique

électron
/ P Potentiel
atomique

électron \GD S B Attt

In the bond state the electron energy is -,
The atomic potential is —Ze?/4meyr
|, is large as compared to 1 single laser photon energy (it should be multiphoton)

U, is large as compared to |,
The laser potential is -Ercoswt, r being the coordinate in the direction of propagation

| must stay below the Intensity for barrier suppression (lgs) 16



The physical origin of the non linear polarization

Of atoms in strong laser fields

Champ laser IR

Gaz Ip (eV) Igss (W/cm?)

Néon  21.56 8.20 10
Argon 15.75 2.34 104 électron
Xénon 12.13 8.23 1019 Potentiel

atomique

~‘--_"

Up and IBSI can be calculated analytically
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The physical origin of the non linear polarization

Of atoms in strong laser fields

The ADK rates: it is a probability of tunnel barrier transmission per unit of time,
analytical formula for the ionization rate as a function

Of E,.cer (the envelope) for a specific gas species
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The physical origin of the non linear polarization

Of atoms in strong laser fields

The ADK rates: it is a probability of tunnel barrier transmission per unit of time,
analytical formula for the ionization rate as a function
Of E,,.cr fOr a specific gas species

Fraction d'ionisation (%)
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The physical origin of the non linear polarization

Of atoms in strong laser fields
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The physical origin of the non linear polarization

,
E. =

Of atoms in strong laser fields

v(t, t;) = = (cos(@;) — cos(@) + sin(¢;)(di — @))
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The physical origin of the non linear polarization

Of atoms in strong laser fields

R binai électron
ecompinaison ——
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The three step model explains the cut-off law
The two trajectories are clearly visible, they converge in the cutoff region
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Why is it odd harmonic?

Laser electric field
0
-1 -
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2

Sw) = E E (w)expi(wt + ¢

S) =|E(@)1- expiwr

* The harmonic dipole changes
Sign every half period:

* Thisis due to the spherical
symetry of the atom and the fact
That the dipole is related to

The algebric distance to the
Nucleus along the polarization

* If one single harmonic burst: no
Harmonic structure

g2 §0) = |E(w)2(2- 2cosgr)

Wr W R
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“Theory of high harmonic generation by low-frequency laser fields’,

Phys Rev A vol 49, num 3, page 2117, (1994).

RO (V2 V() — Beos(t) a(t) | ¥(t,)

/ | N

. _ Laser energy term
Kinetic energy Atomic potential

If we assume:
It

| W(t,x)) = e'iJﬁ)_((z.(t) | 0) + /(131/'1)(1),1‘,) | v))

Inject, calculate and do the scalar product with the state v gives:

ob e ob .
— _,(5 + L)b(v, t) — E(:osta + iFa(t)costd,(v)
.

P

Scalar product with the state 0 gives:

a = i1Fcost / d’vd,(v)b(v,t)

d,(v) = (v | x| 0)
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“Theory of high harmonic generation by low-frequency laser fields’,

Phys Rev A vol 49, num 3, page 2117, (1994).

t
b(v,t) = 'i/ dt’ Ecost'd, (7 + A(t) — Jexp(— / dt" (I, +
0

We are looking for: I(t) —_ <\Ij(t) | T | \Ij(t)>
(@™ (t)(0 | +/(1‘1b v, t)(v [)x(a(t) | 0) +/(1‘1b v, t) | v))

After some maths, t’ is ionization time, t is recombination time, v=p-A:

t
x(t) = i/ (lt'/(I:‘pE(fost'd_,,,(p — A(t"))d:(p — A(t))exp(—iS(p,t,t"))
0

(P — A(t"))°
2

t
S(p,t,t) =/ dt" (I, + )
{‘/
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“Theory of high harmonic generation by low-frequency laser fields’,

Phys Rev A vol 49, num 3, page 2117, (1994).

x(t) =1 /()x dr( i )%(1:,(1)A5.,(t. 7)—A(t))d,(psi(t, 7)—A(t—7)) Ecos(t—7)exp(—iSy(t, 7)) +c.c.

AT
€-+-12

Integration is done over all times spent in the continuum
With:
E
pst(t, 7) = —[cos(t) — cos(t — 7)]
T

S,,-[,(t, T) - ./'tt—‘r dt” (1’-"’_‘;({‘))‘2 T II)'

Sst(t,7) = (I, + Up)T — 2—U"(l —cost) — U,C(T)cos(2t — 1)

-
sin*(%)
-

C(1) = sin(1) — 4
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“Theory of high harmonic generation by low-frequency laser fields’,

Phys Rev A vol 49, num 3, page 2117, (1994).

-
€-+—I

x(t) =1 /0oc dr ( ) d* (pst(t, 7)—=A(t))d,(pse(t, 7)—A(t—7)) Ecos(t—7)exp(—iSg(t, 7)) +c.c.

The Fourier transform of x(t) gives the harmonic spectrum in amplitude and phase
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Macroscopic aspect of HHG:

Champ Rayonnement XUV
laser IR

v
v

Each individual harmonic dipole is driven by the laser with its own amplitude and phase
It then propagates until the end of the medium with some delay

The total number of photons produced is given by the coherent sum of all dipoles
->there are constructive or destructive interferences following the phases between

the dipoles

Addition constructive
des champs XUV

2 2

V2E(w) + n*(w) 5 B(w) = —5 PVE(w)

(S eC”

[

e ’1
E, / /)|(l,,(:)|("':'(:"(l: with ¢(z) = (kg — qkIR)Z — Dat k

0
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Harmonic signal

12

10

Macroscopic aspect of HHG:

If o(z) is linear = 8k.z
We introduce | =t /6k

’ —|=Tmm
=3 mm
—|=5mm
- = = | infini

Cell length in mm

Phase matching means:
L.on infinite

The signal growth is quadratic with
The number of emitters (Pressure)

This is the sign of coherent
effect

30



The absorption limit:

! 2
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General formula with absorption:
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What is the origin of dephasing?

If the propagation phase can be considered linear: 6k = k; — qk1-K;

kz%, n= /1 — % , K. is the gradient of atomic phase
C

2
If the beam can be considered gaussian: (n. = = Me
\ (. o l) l)
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What is the origin of dephasing?

* Role of the Gouy phase term, balance with

Atomic dispersion if ionization is negligible

T/q

lcoh(n) — 1

Z0
* This is particularly

Relevant for high rep rate
Lasers: Strong focussing
 The approx of linear
Phase might not be so
good
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The coherence length is time dependant!

_ /q
leon(n) = Z_1O_10—3p (1.66—73661)
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The coherence length is time dependant!
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In theory,

the HHG signal reaches
Zero when the coherence
Length is exactely half

Of the medium length
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Harmonic signal

The loose focussing geometry

0,8

0,6

0,4

0,2

When the laser energy is high enough: the best is to
Increase the Rayleigh range as much as possible, this

Increases the volume, the ionization rate for phase
Matching, the cell length

Argon (H21)

20
Iris aperture in mm

30

expérience
code
$
40

Optimum for
Zp=17mm

EIaser=6 mJ,
f=1m

(Cell length:2mm,
pressure 10 torr, at
focus)
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What happens in time?

Signal harmonique (en u.a.)
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37



Each HHG source has to be designed

following the pump laser characteristics

Depending on the harmonic you want:

->You choose the gas

->You calculate the focussed intensity you need

->You obtain the focussing geometry

->This gives you the medium length and optimum pressure
->You do the phase matching optimization to reach the typical
Conversion efficiency (for each gas)

* The most efficient lasers are as short as possible, with short A
* The mid IR ones are good for high energy photons, are
generally tunable but phase matching is harder to reach in the

presence of ionization
38
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Origin of the attosecond structure for HHG :

XUV

Time

The wider the spectrum, the shorter the pulse envelope
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Origin of the attosecond structure for HHG :

~
2500
Em— — —
= [ — - —
e
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g i
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0 . | Pap—— | e I ' l
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Figure-16:-lonization-and-recombination times-as-a-function-of-the-harmonic-order-for-
a-generation-in-argon-at-1.2-10"#W/cm?, in-blue ‘the-first-quantum-path, -in-red-the-
second-one, the-cutoff-is-clearly-visible(Ph.D. thesis-of Yann-Mairesse).{]
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How to measure the pulse duration:

The Rabbitt method

: A
Electronic s : — 8
HHG Filtres spectrometer £ p— Z
IR XOV+IRL___Ixuv~ /[ XOV+IR - — g
IR IR !
9min 9max

Figure-11:-Principle-of the-RABBITT-technique.-(left)- The-laser-IR-beam-is-split-into-two-
parts:-one-used for-HHG, -the-other-for-dressing. -Filters-are-used-to-remove the-remaining-
IR-after HHG. - (Right)-Cartoon-of the spectra-obtained.-Sidebands-show-up right-in-
between-odd-harmonics-electrons-coming-from- XUV photoionization by the-attosecond
pulse-(taken-from-a review-paper-by-Thierry-Ruchon). =

2T+ Y11 —Vy_1g
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How to measure the pulse duration:
The Rabbitt method

Photoelectron energy (eV)

2 6 10 14 18
127 )
- ) !1!£ !
’q? -
> S INITINE §
? I B B
a ¥
INITINE &
4 in k'lf 1
. BN
1 13 15 17 19 21 23
Harmonic order - q

Figure-20:-Example-of-a-RABBITT trace taken-in-Ar-for-both-the-generating-and-
detecting-gas.- The-minima-in-the sidebandsvs the-delay-drift from-one-sideband
to-the-next-signaling-a-lack-of-synchronization-of-the-harmonics-(superimposed-

white-lines).  This-figure-is-taken-from-a-review -paper-by-Th.-Ruchon{] .-
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Single attosecond pulses
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Figure-18:-Effect -of a-change-of the-CEP-on-the-spectrum-(left panel)-and vcorreéponding'
temporal profile-(right panel)-for-an-attosecond-source-driven-by-a polarization-gate-field-
(from-[Sola-2006]).~
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Commercial sources:

Generally high rep rate, quite compact:

&

High-power XUV beam lines

Products

Applications Company Career Publications Contact

Sources of short-wavelength radiation, such as synchrotrons or free-electron
lasers, have already enabled numerous applications and will facilitate more seminal
studies. On the other hand, sources of coherent extreme ultraviolet to soft x-ray
radiation via high-harmonic generation (HHG) of ultrashort-pulse lasers have gained
significant attention in the last years due to their enormous potential to address a
plethora of applications in a cost-effective and tabletop format. Therefore, they
constitute a complementary source to large-scale facilities. The photon-flux values
obtained by fiber-laser-driven HHG sources can be considered the highest of all
laser systems for photon energies between 20 eV — 150 eV. Even higher photon
energies up to the soft X-ray regime are feasible using Tm-based driving lasers.

AFS ultrafast fiber lasers are ideal high-harmonic drivers. These turnkey HHG
beamlines can address several applications in the EUV to X-ray spectral region.

Applications

> Photoelectron spectroscopy

> Coherent diffractive imaging (CDI) nanoscope / XUV
imaging

> Attosecond science

> Pump-probe experiments
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Commercial sources:

Generally high rep rate, quite compact:

Qj Products Applications Company Career Publications Contact

The following specs show only our exemplary main platforms. We happily customize a system exactly to your needs.

Examplary configurations

Photon energy 21eV 90 eV 150 eV
Wavelength 59 nm 13 nm 8.5 nm
Photon flux per upto10™s! upto5x10'0s! upto10'%s™
harmonic

Average power per up to 330 yW up to 0.7 yW up to 0.4 yW
harmonic

Repetition rate flexible, up to 10 MHz

Pulse duration pulse duration < laser pulse duration i.e. < 30 fs (or shorter)

Spectral bandwidth can remain close to the transform limit with flexible bandwidths (down to < 10 meV)

Beam profile Gaussian

Dimensions of HHG 80 cm x 40 cm x 40 cm

chamber
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Specific original sources:

* Tunable

* Circularly polarized

* Crystal target HHG for single attosecond compact
sources
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