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Our research in a nutshell
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High-average power ultrafast lasers

Ultrafast high 
average power 

THz sources

Terahertz applications

High-power Low-power

TDS of water

Optical Rectification

Modelocked oscillators

imaging

Etc…

PULS group Feb. 2019

  near-infrared (1 – 3 µm)
f     near-infrared (300 – 100 THz)

f  Terahertz (1 – 10 THz) 
& mid-IR (10 – 100 THz)



ultrafast lasers
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• Laser light pulses with fs - ps durations

• Broadband spectra with hundreds of nm

• Peak powers MW – GW,  intensities 1012 – 1015 W/cm2

… and beyond



ultrafast lasers

Photonics and Ultrafast Laser Science 6

• Laser light pulses with fs - ps durations – down to attoseconds

• Broadband spectra with hundreds of nm – up to several octaves

• Peak powers MW – GW,  intensities 1012 – 1015 W/cm2 – above 1018 W/cm2

… and beyond

Physics 2018
“for their method of 
generating high-intensity, 
ultra-short optical pulses”

Example:  commercial Ti:Sa amplifier 
1 mJ – 1 kHz  1W @30 fs

Peak power: tens of GW



Important Parameters
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Notation Everyday parameters for ultrafast lasers Subtleties

Ep Pulse energy (J)

tp Pulse duration (fs) • Definition often FWHM – can be misleading
• RMS pulse duration better suited but rarely used

frep Repetition rate (Hz)

Pav Average power (W) Pav =frepEp

Ppk Peak power (W) • Can be calculated from Ep and tp
• Simple for well-known pulse shapes (Gaussian,…)

Ppk = constant*Ep/tp

• For complex pulse shapes

Ipk Peak intensity (W/m2) Requires knowledge on transverse beam profile

0, n0 Central Wavelength (nm), 
central frequency (Hz)

For complex spectra the central frequency might become different to the 
center of mass of the spectrum 

Dp, Dnp Spectral bandwidth (nm, Hz) • Often defined by width of spectral intensity
• Only relative bandwidths are the same in wavelength and frequency

TBP Time-bandwidth product (no unit) tpDnp

• Defined with intensity FWHM
• Reaches a minimum that gives us information about the shortest pulses 

reachable with a given spectral width
• Can be flawed for complex, very short pulses



Focus here: higher average power
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“low” power

“high” power

Pav = Ep  frep
Higher average power at a given pulse energy = more pulses / s

 Higher signal to noise ratio, shorter measurement times, higher speed, …



two areas mostly ‘fueled’ progress in high average power
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Coherent Diffractive Imaging
# M. Zürch, et al, 

Sci. Reports 4, 7356 (2014)

XUV Spectroscopy
# A. Cingoz, 

Nature 482 (2012)

Reaction microscopes
# M. Sabbar, et al

Rev. Sci. Instr. 85, 103113 
(2014)

generation of high repetition rate XUV pulses via high harmonic generation  

higher speed material processing

Bioresorbable polymer Polyimide Hole array drilling Ceramics

Courtesy of Resonetics

XUV photoemission
# C. H. Zhang, 
PRL 102 (2009)



the workhorse of ultrafast science
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Femtosecond Ti:Sa oscillator

Regenerative amplifier

green pumps

Typical oscillators:
• Pulse duration ~20 fs
• Pulse energy ~nJ
• Rep Rate ~ tens of MHz
• Peak power ~ 10s kW

Typical amplifiers:
• Pulse duration ~30 fs
• Pulse energy ~mJ
• Rep Rate ~few kHz
• Peak power ~ GW

 Average power limited to few watts
Pav = Ep  frep



the workhorse of ultrafast science
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Femtosecond Ti:Sa oscillator

Regenerative amplifier

green pumps Non-
radiative 

transitions: 
Large heat 

load

non-radiative
transition

Pump
≈500 nm

Laser transition
≈800 nm

non-radiative
transition

Ti:sapphire laser:



the workhorse of ultrafast science
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Femtosecond Ti:Sa oscillator

Regenerative amplifier

green pumps Non-
radiative 

transitions: 
Large heat 

load

non-radiative
transition

Pump
≈500 nm

Laser transition
≈800 nm

non-radiative
transition

Ti:sapphire laser:

+ other problems:
• small upper-state lifetime (few µs) 

high pump intensities needed to saturate
• degradation of crystal quality when 

increasing doping 

Bulk geometry with large thermal load
 thermal aberrations



material properties + advanced cooling geometries
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Yb:YAG laser:

+

Pump  

Laser

• Small heat 
load < 10%

• Long lifetime 
(ms)

• High doping



high-power lasers based on Yb-doped technology
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 Fiber

 Slab

 Thin disk



most commonly: chirped-pulse amplification
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 Fiber

 Slab

 Thin disk

Physics 2018



high power fiber CPA
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Most commonly used: chirped pulse amplification (CPA)

Modelocked
oscillator

Pre-
amplifier(s)

Pulse 
picking, 

Stretcher

Power 
amplifier

(Compressor)

pump pump pump pump pump

Application

Single-stage
ultrafast fiber 
amplifier @1µm
830 W, 640 fs,
78 MHz, 11 µJ

T. Eidam, … J. Limpert, 
A. Tünnermann, 
Opt. Lett. 35, 94-96 (2010)

Yb-doped glass 
– 1 µm

Group of J. Limpert, Uni Jena

Limit: high-order mode instabilities



further scaling: coherent combination
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Performance:
• 10.4 kW
• 254 fs pulses
• 80 MHz 
• 130 µJ



slab amplifiers
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• 1.1 kW, 
• 615 fs

20 MHz 
• 55 µJ

clever geometry: CPA avoided for 
moderate pulse energies 
issues: pointing, beam quality



Side view: 
pumping 
scheme

Resonator

thin-disk concept
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→ outstanding heat removal, extremely small thermal aberrations

→ Yb3+-doped gain: diode pumped, accessible high-power diodes 

→ good pump absorption: many passes through gain required

→ very small accumulated nonlinearities

A. Giesen, et al., Appl. Phys. B 58, 365 (1994)

→ ideal for ultrafast + high power 



thin-disk laser
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Animation courtesy -
M. Saraceno 
martin@saraceno.info



Single-disk high-power CW operation
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Courtesy of Dirk Sutter

4 kW TEM00 (2013)

14 kW
(M² ~ 10)

B. Metzger et al. (TRUMPF, 2019) Gottwald et al., Security and Defense 2013 

4 kW
(M² <1.4)

14 kW with ηopt.>70%

Further scaling w/ multiple heads, no barriers for power scaling beyond current levels
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thin-disk ultrafast amplifiers
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Most commonly used: chirped pulse amplification (CPA)

Modelocked
oscillator

Pre-
amplifier(s)

Pulse 
picking, 

Stretcher

Power 
amplifier

(Compressor)

pump pump pump pump pump

Application

unique combination of 
high energy and high 
average power: 
kilowatt powers
100s mJ
1-10s kHz



thin-disk amplifier geometries
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Multi-pass amplifier Regenerative amplifier

→ Thin-disk: low gain per pass (typical 10%)

→ moderate amplification, 
high extraction (booster)

→ large amplification (main)



state-of-the-art thin-disk regenerative amplifiers
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• 1 kW
• 200 mJ
• 5 kHz
• 1.1 ps



state-of-the-art thin-disk multi-pass amplifiers

Photonics and Ultrafast Laser Science 27

• 1.9 kW
• 400 kHz
• 1.1 ps
• ! No CPA

(now up to 2.3 kW)



thin-disk regenerative amplifiers: state-of-the-art
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Courtesy of Thomas Metzger

T. Nubbemeyer et al. OL 42, 7 (2017)

New developments: 2 kW – 20 kHz – ps, etc… 

“Flagship” Laser

Energy:          200 mJ
Power:           >1.0 kW
Duration:        500 fs
Peak Power: 0.4 TW



industrial application of kW-class thin-disk amplifiers

29 |

P H O T O N I C S P U B L I C P R I V A T E P A R T N E R S H I P

High throughput (m2/min)
laser structuring with multiscale 
periodic features for advanced 
surface functionalities

Courtesy of Dirk Sutter



scientific applications: Laser Lightning Rod “LLR” EU-Project

Goal: Field campaign to actively trigger lightning at Säntis Mountain (CH)

http://llr-fet.eu/

-

*

Downward 
flash

a) c)

Laser

Upward
flash

Upward 
flash

b)

Goal: 1 J – 1 kHz – 1 kW - 1 ps

Courtesy of Thomas Metzger



High-power 
oscillator

Pre-
amplifier(s)

Pulse 
picking, 

Stretcher

Power 
amplifier

(Compressor)

pump pump pump pump pump

Application

thin-disk ultrafast oscillators
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High-power oscillators: one-box, MHz repetition rate

Amplifier-free, one-box 
modelocked oscillators:
hundreds of watts
3 - 100 MHz
10 - 100 µJ

…. the ‘future’ ?



no different than a “textbook” modelocked laser
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 Short pulse circulates in cavity (fs-ps)

 High repetition rate pulse train at the output (MHz)

 Pulse starting 

 Semiconductor saturable absorbers

 Kerr lensing

 Pulse formation 

 Soliton modelocking

 Kerr lens modelocking

 Steady-state pulse parameters:  interplay of gain, 
(saturable) loss, dispersion, Kerr nonlinearity, etc.



the technology has come quite far
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• ‘One-box’ oscillator

• Femtosecond soliton-type pulses

• megahertz repetition rate

• tens of microjoules pulse energy 
(up to 80 µJ #1)

• hundreds of watts of average power 
(up to 350 W #2)

→ orders of magnitude higher 
levels than other modelocked
laser technologies

#1  C J Saraceno et al,  Optics Letters 39 (2014)
#1  F. Saltarelli et al,  Optics Express 39 (2019)



the technology has come quite far
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• ‘One-box’ oscillator

• Femtosecond soliton-type pulses

• megahertz repetition rate

• tens of microjoules pulse energy 
(up to 80 µJ #1)

• hundreds of watts of average power 
(up to 350 W #2)

→ Difficulties: intracavity nonlinearities, 
modelocking instabilities, thermal effects

#1  C J Saraceno et al,  Optics Letters 39 (2014)
#1  F. Saltarelli et al,  Optics Express 39 (2019)

• 350-W 
• 940-fs, 
• 39-µJ 
• 8.88-MHz

• 242-W 
• 1-ps, 
• 80-µJ 
• 3-MHz



challenge: pulse duration
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Yb:YAG @ 1030 nm

Strong compromise between
pulse duration and average

power/pulse energy

State-of-the-art dominated by Yb:YAG

Yb:YAG: narrow emission bandwidth
D ~ 7 nm

State-of-the-art 
still dominated by 
Yb:YAG

100                                     

10                                 

10                                     100                                 1000     
Pulse width (fs)
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Oscillator state-of-the-art



Kerr-lens modelocked thin-disk oscillators
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Group of Oleg Pronin
J. Brons, et. al. 
Opt. Lett., 39, 6442 (2014)

First Kerr Lens modelocked TDL
O. Pronin, et. al., Opt. Lett., 36, 4746 (2011)

Ep = 14.4 µJ
Pav  = 270 W
τp = 330 fs
frep =  18.8 MHz

Ep = 10 µJ
Pav  = 155 W
τp = 140 fs
frep =  15.6 MHz

J. Brons, et al.  
Opt. Lett. 41, (2016)

Yb:YAG Kerr-lens modelocked TDLs
Now at:

Kerr-lens 
modelocked
Yb:YAG
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broadband laser materials are (still) needed!
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• 100 W – sub-100 fs ‘barrier’ still 
undemonstrated from oscillators 
directly 

• broadband materials suitable for 
the thin-disk geometry still 
needed!

• efficient pulse compression 
techniques for high average 
power allow to reach desired 
regime for applications

with external 
compression
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Reminder SPM
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Self-phase modulation

n I( ) = n + n2 I I(t)  self-phase modulation
I(x,y)  self-focusing

f t( ) = -kn I( ) LK = -k n + n2 I t( )éë ùû LK

nonlinear phase

leading edge
SPM: red

spectral broadening of a transform-limited pulse: “red before blue”

trailing edge
SPM: blue

 spectral 
broadening of a 
transform-
limited input 
pulse: “red 
before blue”

Wigner trace SPM, n2>0

n2>0



Reminder SPM
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Self-phase modulation

n I( ) = n + n2 I I(t)  self-phase modulation
I(x,y)  self-focusing

f t( ) = -kn I( ) LK = -k n + n2 I t( )éë ùû LK

nonlinear phase

leading edge
SPM: red

spectral broadening of a transform-limited pulse: “red before blue”

trailing edge
SPM: blue

 spectral 
broadening of a 
transform-
limited input 
pulse: “red 
before blue”

Wigner trace SPM, n2>0

n2>0



SPM broadening for pulse compression
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Only SPM, n2>0 Only positive dispersion

(positive) SPM can be (partly) compensated by negative dispersion

Wigner function: time frequency representation

Subtleties: 
• high-order terms in the spectral phase
• self-focusing occurs simultaneously as SPM

n I( ) = n + n2 I I(t)  self-phase modulation
I(x,y)  self-focusing



pulse compression techniques 
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• Hollow capillaries 

Nisoli et al, Appl. Phys. Lett. 68, 2793 (1996)

• Grazing incidence reflections
• Losses increase at

moderate to small core sizes, typical 
70% transmission

• Suited only for very high energies 
(mJ and above)

• Fibers
• Solid-core fibers

• Hollow-core fibers

• Real guiding 
• Solid-core: limited by self-focusing (4 

MW for linear polarization and glass), 
damage threshold and bending loss at 
large mode areas

• Hollow-core: limited by difficulties in 
bending and damage 



Compression in multi-pass cell
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Figures courtesy J. Weitenberg
Fraunhofer ILT Aachen
First realization (ILT Aachen):
Schulte et al. "Nonlinear pulse 
compression in a multi-pass cell," 
Opt. Lett. 41, 4511-4514 (2016) 

Idea: can one have the advantage of 
free-space propagation (for average 
power handling), and the large SPM 
provided by fibers - free of self-focusing?



Key point: avoid self-focusing
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Example
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- Herriott type multi-pass cell1 + fused silica + negative dispersive mirror pair

- Generated spectrum agrees well with 3D pulse propagation model

- M² < 1.15

- Excellent efficiency: 91%

88fs

Pavg = 112W  frep = 13.4MHz EP = 8.4µJ    
tp = 88 fs    Ppeak = 80 MW λ = 1030 nm

Tsai et al. "Efficient nonlinear compression of a mode-locked thin-disk oscillator to 
27  fs at 98  W average power," Opt. Lett. 44, 4115-4118 (2019)



Works for an extremely large variety of parameters
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High energies – gas filled cell

1 mJ, 31 fs pulses



challenge: spectral coverage
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‘novel’ high-power laser technology: limited spectral coverage
Yb:YAG - 1030 nm



spectral coverage
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Trend:  high-power from THz to XUV



spectral coverage
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XUV radiation via HHG



MHz repetition rate HHG
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- Oscillator-Driven High Harmonic Generation at MHz Repetition Rate
- Compact and simple set-up for HHG with up to 5x107 ph/s on the 19th harmonic
- Further improvement: shorter pulse duration, higher driving powers

Driving compressed laser
Pav = 46 W
tp = 108 fs
Ppeak = 105 MW
frep =    2.4  MHz
Ep =    19  µJ

F. Emaury, et al. Optica 2, 11 (2015) 



Intracavity high-harmonic generation
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F. Labaye, et al., Opt. Lett.42, 5170-5173 (2017)

- Intracavity HHG driven at 320 W average power - 250 fs – 17 MHz
- Remarkable: 50 W of pump power
- 2.6×108  photons/s for the 11th harmonic (94 nm, 13.2 eV)

At the focus:
Intensity = 2.8x1013 W/cm2

Group of Prof. Südmeyer



spectral coverage
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Mid-IR sources for spectroscopy



“exotic” gain materials emitting directly at longer wavelengths
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• Dopants: Tm, Ho, Cr…. 

• Much less explored and 
understood materials 

• Characterization tools and 
components not as well developed 

Example: Ho:YAG thin-disk laser emitting at 2.1 µm

Ho:YAG

Tomilov et al. “Moving towards high-power thin-disk lasers in the 

2-µm wavelength range“, J. Phys. Photonics 3 022002 (2021)

• 112 W fundamental-mode CW 
thin-disk laser at 2 µm

• 40 W modelocked oscillator: 
highest power oscillator at 2 µm



Nonlinear conversion (DFG, OPA)
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J. Zhang, et al., Light: Science & Applications, 7 (2018)

J. Zhang, et. al., IEEE 
JSTQE, 24, 1–11 (2018)

Pav  = 25 W
τp = 270 fs
frep  =  77 MHz

Ho:YAG @2.1 µm

Group of Oleg Pronin
Now at:

>20 mW, 5-20 µm, at MHz repetition rate



Spectral coverage
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High power THz radiation



Laser system in our lab
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GDD = -6000 fs2

OC

SESAM47 mbar

Thin-disk
Yb:LuAG

Pavg = 125 W

frep = 13.4 MHz

EP = 9.3 µJ

τp = 580 fs (/ 88 fs)

λ = 1030 nm



THz generation Method
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Difference frequency
mixing

Optical rectificationPhotoconductive 
switch

nJ-µJ
tens to hundreds of µJ:

ideal for MHz TDLs
mJ and above

c(2) in non-centrosymmetric crystalscarrier acceleration in 
semiconductor

Photo-currents

Pulse energy required/suited



High average power THz Sources

Photonics and Ultrafast Laser Science 58

near infrared 
pulses

<< 10 W 

THz pulses
<< 1 mW

frequency 
conversion

<<1%

• state-of-the-art THz power in the lab: 
<mW level

• repetition rate or pulse strength: compromise 
necessary

• origin of limitations: low driving power and 
efficiency

• most experiments requiring average power: 
accelerator facilities

Lab THz-TDS sources



THz spectroscopy of water
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High power oscillator

THz generation

Sample: 
water Electro-optic sampling:

full-field reconstruction

high-power oscillator driven
THz time-domain spectrometer

Problem: water is highly absorptive! 

Very difficult experiments!



Promising for High Powers: Lithium Niobate
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• Lithium Niobate (LN): high nonlinearity and little 

multi-photon absorption

• But: phase matching requires tilting the pulse 

front 

• Rather complex generation process

• Conversion efficiencies on the 1% level

demonstrated (but only at lower repetition

rate)

(nTHz≃ 5)(ngr, NIR≃2.2)

THz

100 W – 13 MHz 
pump



Setup
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• Optional MPC compressor allows for variable 

pulse duration (97fs, 236fs, 550fs)

• 0.6% MgO-doped sLN crystal on water cooled 

mount

• Quasi instantaneous electro-optic sampling with 

15Hz refresh rate

• Power measurements with pyroelectric detector

F. Meyer et al., "Single-cycle, MHz repetition rate THz source with 66 mW of average power," Opt. Lett. 45, 2494-2497 (2020) 



Results: Lithium Niobate
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• Similar EOS traces for all pulse durations

• Slight increase in bandwidth for shorter pulses

• Signal-to-noise ratio up to 70 dB 

(20 averages, 15 traces/s)

F. Meyer et al., "Single-cycle, MHz repetition rate THz source with 66 mW of average power," Opt. Lett. 45, 2494-2497 (2020) 

T
H

z

PTHz 66 mW

Epeak ~16.7 kV/cm

Ppeak ~18 kW

η 6·10-4

frep 13.3 MHz



THz imaging
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Images:

• Large contrast enhancement

• Difference in material is recognizable

S. Mansourzadeh et al., "High-Power Lensless THz 
Imaging of Hidden Objects," in IEEE Access, vol. 9, pp. 
6268-6276 (2021)



Conclusion
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high-power, high-repetition rate from X-ray to THz

• Ultrafast lasers have seen 
spectacular progress lately

• No real end in sight
• Time for applications to catch up


